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Abstract

We consider Maxwell systems with instantaneous conductivity and nonlocal in time
(hysteretic) polarization laws which are characteristic of dispersive dielectric media.
We formulate such systems in an operator theoretic framework and show that, under
certain conditions on the dielectric response function, the resulting systems generate
Cy semigroups. It is shown that multiple Debye polarization models are included in

those for which a semigroup formulation is possible.



1 Introduction

In a forthcoming monograph [BBLO00] we have developed a theoretical and computa-
tional framework for electromagnetic interrogation of dispersive dielectric media. In
that work we show that one can take a time domain variational or weak formulation
of Maxwell’s equations in dispersive materials and, in the context of inverse prob-
lems, use partially reflected polarized microwave pulses to determine both dielectric
material properties and geometry of bodies (specifically for plane waves inpinging
on slab geometries in paradyms which approximate far field interrogation). This is
done in configurations involving either supraconductive reflecting back boundaries or
acoustically generated virtual reflectors.

The propagation and reflection of electromagnetic waves in dispersive dielectric
media is, of itself, an interesting topic of investigation. As we point out in the next
section (and demonstrate computationally in [BBL00]), the underlying dynamical
systems are not typical of either standard parabolic or standard hyperbolic (even
with the usual dissipation) systems and are hence of mathematical interest. In this
short note, we consider the Maxwell system for rather general dispersive dielectric
media and show that such systems, under appropriate conditions on the polarization
law, generate Cj, semigroup solutions. These results are presented in the context
of the 1-dimensional interrogating systems developed in detail in [BBL0O] and we
invite interested readers to consult that reference for more detailed discussions and

development of the underlying model employed here.



2 Modeling of Dispersiveness in Dielectric Media

We begin with time domain Maxwell’s equations in second order form (e.g., see
[BBL0O]) for the electric field E = E(t, z) of 1-dimensional polarized waves

E+-P+=J —CFE'"=—-—J, (2.1)
€ € €p
1
Veoho

Js is a source current density and P is the electric polarization of the dielectric

where ¢ = is the speed of light in vacuum, J, is the conduction current density,
medium. We assume very general constitutive material laws for the polarization and

conductivity given by

P(t,2) = (g B)(t,2) = | "ot — 5,2)E(s, 2)dz (2.2)

Jo(t,2) = (9. * E)(t, 2) = /Ot ge(t — s,2)E(s, 2)dz (2.3)

where we have tacitly assumed that E(¢,z) = 0 for ¢ < 0 and that both g¢,(¢, z) and
ge(&, z) vanish for £ < 0. With these assumptions, the integrals in equations (2.2),
(2.3) are equivalent to integration over all of (—oo,00) and thus are indeed convo-
lutions. The displacement susceptibility kernel g, (also referred to as the dielectric
response function(DRF)) and the conductivity susceptibility kernel g. introduce non-
locality in time in the polarization and conductivity relationships [APM89], [Jac75]
which is equivalent to frequency dependence of the dielctric permittivity ¢ and con-
ductivity o when using a frequency domain approach. We assume that either P or
J. or both may contain instantaneous (local in time) components by introduction of
§ distributions in the kernels g, and/or g, respectively.

A medium is dispersive if the phase velocity of plane waves propagating through it
depends on the frequency of the waves [Jac75, Chap.7], [Ch89, Chap.8]. To determine
the dispersive nature of a medium described by equations (2.1)-(2.3) we seek plane-

wave solutions of the homogeneous analogue of (2.1) of the form E(t, z) = Eje~(«#x2)
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which travel in the z direction and have wavelength A = 27/k. The phase velocity
v, of these waves is the speed at which planes of constant phase move through the
medium. In this case the argument wt — Kz is constant and
vy = — = W/K. 2.4
p= 2 =wf (24)

—i(wtkz) in (2.1) is equivalent to seeking

Seeking plane wave solutions of the form Eye
solutions of the form Eye®*? in the frequency domain version of (2.1). Thus we use
the Fourier transform in (2.1) and obtain
2r w? 4 W 5 2
—w'E——P—-—J,—cE"=0 (2.5)
€0 €0

where we have ignored the source term J; and where the overhat will represent the
Fourier transform throughout. Since we see from (2.2) and (2.3) that P = §,F and
jc = ch’, this can be written

CE" + w21+ L IyE = (2.6)

WEq €0

We note that (2.6) is the generalized Helmholtz equation [Jac75, p. 271]

E"+KkKE=0 (2.7)
with
2 A ~
y_ W ige(w) | gp(w)
-“n 2.
K CZ(+MO+€O) (2.8)

which has solutions E(w,z) = Eee*™*@7z Tt follows that the corresponding time
domain solutions are our desired solutions of the form E(t,2) = Eye~'@!*i2) where
the wavenumber k = k(w) will in general depend on the frequency w. The equation
(2.8) relating the frequency w and the wavenumber k of propagating waves is known
as the dispersion equation for the medium. In the case of vacuum or free space where

~

G, = g. = 0 so that K = w/c, we obtain the corresponding phase velocity v, = ¢ = the
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speed of light as expected. More generally the phase velocity in a dielectric medium

with conductivity and polarization is given by

vpzc/\/l—i-igc/eow—l—gp/eo. (2.9)

In light of (2.9) and the definition of a dispersive medium, we see that if either
ge/w or g, depend on w, we will have dispersiveness. Several special cases are worthy
of note.

For instantaneous conductivity, that is, g.(t,2) = ¢0d(t) so that (2.3) reduces to
Ohm’s Law J, = o F, we see that the term ¢g./eqw becomes io/eqw. Thus a medium
with simple Ohm’s Law conductivity will be dispersive (it is also dissipative in the
usual sense since the conductivity term in (2.1) becomes %E) For instantaneous
polarization (often assumed in standard treatments of the Maxwell theory) we find
9p(t, 2) = €9x0(t), where x is the dielectric susceptibility constant and hence §,/€y = x
and the medium is not dispersive. One must turn to more complicated (and more
realistic) models, such as those of Debye or Lorentz, to have a polarization based
contribution to dispersiveness in a medium. For the usual Debye polarization model

[E1193, p.386] one has
gp(t) = e ep(es — €x0) /T, >0, (2.10)

where 7 is a relaxation parameter and e,, €5, are familiar dielectric constants. In this

case one finds

R 1 —wt
() = ales — o) [ 7a0]

For the Lorentz model [RMC93, p.496] we have

2
€ow
R et sinwgt, >0, (2.11)

9p(t) = y



where vy = /wg — 1/472. In the frequency domain this yields

472

1+1427w)% + 47'21/3]
(w2 — w?) —iw/T

(Wi — w?)? + w2/7'2]

gp(w) = eowg[(

_ 2
= €0u)p 140} [

and again we have a polarization based dispersive medium. Higher order (the Debye
and Lorentz models correspond to first and second order, respectively, differential
equation models for the polarization P - see [BBL00| and the references therein)
models, as well as combinations of such models also lead to dispersion in a medium.

Thus, in summary we see that instantaneous conductivity but not instantaneous
polarization yields dispersiveness in a medium. For a polarization contribution to dis-
persiveness one must include first or higher order polarization models (instantaneous
polarization can be correctly viewed as zero order polarization dynamics). For our
semigroup presentation in the next section we shall therefore consider the model (2.1)
with instantaneous conductivity and a general (higher order) polarization model given
by (2.2) with g, = g where the DRF g is assumed smooth in time (i.e., without loss
of generality we can assume no instantaneous component for g). Such distributed pa-
rameter systems are of interest since they are neither simple hyperbolic nor parabolic
in nature.

For simple Ohm’s Law conductivity and instantaneous polarization (or no polar-
ization), the system (2.1) becomes a well understood dissipative or damped hyperbolic
system for which a semigroup formulation can readily be found in the research liter-
ature on distributed parameter systems. However, for (2.1) with polarization based
dispersiveness, we obtain a system with behavior of solutions that are neither stan-
dard hyperbolic (finite speed of wave propagation along characteristics) nor standard
parabolic (infinite speed of propagation of disturbances). Indeed for (2.1) with either

Debye or Lorentz polarization, rather fascinating solutions can be observed. These in-



volve the formulation of so-called Brillouin and Sommerfeld precursors where a pulsed
excitation (containing waves with a range of frequencies) evolves into waves propa-
gated with different velocities which coalesce into wave “packets” (see Chapter 4 of
[BBL00] and [APM89] and the references therein for discussions of these phenomena).

It is of both mathematical and practical interest to know whether these interesting
systems can be described in a semigroup context. The potential advantages afforded
by a semigroup formulation are widespread since there is a tremendous literature for
control, estimation and identification, and stabilization of systems in a semigroup
setting. Results for both stochastic and deterministic control methodologies (in both
time domain and frequency domain) including open loop and feedback formulations
are abundant [CZ95], [BDDM92], [BDDM93], [CP78], [vK93].

In the next section we present a semigroup formulation of the system (2.1) with
simple Ohm’s Law conductivity along with general polarization based dispersiveness
generated by polarization laws of the form (2.2). To be more precise, we take (2.1) for
t>0and z € (0,1) with J.(¢, z) = 0(2)E(t, z) where o(z) vanishes outside Q C (0, 1].
The closed region 2 is some dielectric material region (e.g., a slab or several slab-like
regions) containing instantaneous conductivity as well as non trivial polarization of
the form (2.2) with g¢,(¢,2) = g¢(t, 2) vanishing outside z € Q. Using this form of

conductivity and polarization in (2.1), we obtain the system

B(t,2) + —(0(2) + 90, 2) B(t, ) + %g(o, E(t, 2)

t 1 1.
+ 6—§(t —5,2)E(s,2)ds — ¢*E"(t,2) = —6—J5(t, 2). (2.12)
0 €o 0

With this system we take boundary conditions (see [BBL0O0] for details) that represent
a total absorbing boundary at z = 0 and a supraconductive boundary at z = 1. This

can be expressed by

E(t,0) — cE'(t,0) =0 (2.13)

6



E(t,1) =0. (2.14)

With the definitions

alt,s) = %g(t,z» ﬂ(Z)=%9(0,Z)
W) = %(a(zwg(o,z)), J(t,z>=—éjs(t,z),

we can write equation (2.12) as
E+~vE+BE4+axE—-cE"=7J (2.15)

where « * F is the usual convolution
t

axE(t z)= /0 a(t —s,2)E(s, z)ds. (2.16)

One can use the boundary conditions (2.13) - (2.14) to write (2.15) in weak or
variational form so as to seek solutions ¢ — E(t) in V = HE(0,1) = {¢ € H'(0,1) :
#(1) = 0} in a Gelfand triple setting V — H < V* with pivot space H = L*(0,1).
Under modest regularity assumptions on «, 3,7 and J, one can establish existence,
uniqueness and continuous dependence (on initial conditions and input) of solutions.

Details are given in Chapter 3 of [BBL0O0].



3 A Semigroup Formulation

We turn in this section to a semigroup formulation for the dispersive system (2.12)
- (2.14) or equivalently, (2.13) - (2.15), with instantaneous conductivity and general
(non instantaneous) polarization.

For our development we assume that v, € L*(0,1) while « € L*((0,T) x
(0,1)) and «, 3,y vanish outside 2. We moreover assume that « can be written as
a(t,z) = oy (t)as(z) where 0 < af, < as(z) < ay on §2 C (0, 1] for positive constants
oy, oy, with ag vanishing outside €2. We assume that ¢ — a4 (¢) is positive, monotone
nonincreasing, and in H'(0,7) so that ¢&;(¢) < 0. This monotonicity assumption
is typical of the usual assumptions in displacement susceptibility kernels (e.g., see
[Blo81, p.102] or [Hop77]). We shall return to discuss this monotonicity requirement
further after our semigroup arguments of this section.

We consider the term (2.16) given by

t

/Ot a(t —s)E(s)ds = / ot — s)E(s)ds

—0o0

from (2.15) and note that it can be equivalently written

/t ot — 5)E(s)ds = /0 (=€) Bt + £)de

~ [ a-0B(+ o= [ GOB(+ e
where G(£) = a(—£). We denote G1(€) = ay(—&) so that G(§) = G1(§) .
The approximation is valid for r sufficiently large (r = oo is permitted) so that
a(t) ~ 0 for t > r. We observe at this point that G (€) > 0 with G1(&) > 0 on (—r,0].
As introduced in the previous section, we take V = Hx(0,1), H = L?(0,1) with
V < H < V*. We shall have use of H = L2 (), the space L?(Q) with weighting
function aw, which is readily seen to be equivalent to L?(2) due to the upper and lower

bounds on ay € L*°(£2). We shall denote the restriction of functions ¢ in L?(0,1) to

Q again by ¢ and write ¢ € L*(Q) or ¢ € L2 () whenever no confusion will result.
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Using the above definitions and approximating, we may write (2.15) as
. : 0
E(t)+~E(t)+ BE({t)+ [ GE)E(t+¢&)dE — CE"(t) = J(¢). (3.1)
Using an approach given in [BFW88|, [BFW89], [FI90] and [BMZ96] for viscoelastic
systems, we define an auxiliary variable w(t) in W = L% (—r,0; H) by w(t)(0) =
E(t)— E(t+86),—r <60 <0. Since G(#,2) > 0 for § € (—r,0], z € Q we may take as

an inner product for W the weighted L? inner product

by = [ GO 0),w)) 8 = [ Gi(6) [ aa(z)n(0, (6, 2)d:

under which W is a Hilbert Space. We note that by our notational convention ex-
plained above, we have w(t) € W for any E(t,z) with E(-,-) € L (—r,0; H). Using
a standard shift notation, we may write w(t) = E(t) — E(t+0) = E(t) — E*() where
E'(#) = E(t+0) for —r < 0 < 0. Adding and subtracting appropriate terms in (3.1),
we find

B(0)+1B0) + 550 + [ GOB0dE~ [ GEOIB®) ~ BUQME ~ 2" (1) = T (1)

or, equivalently

Bo) 418 +(3+GE0 - [ GEOu0@de - B ) =T0) (32
where Gi1(2) = [2, G(€)dE = a(2) 2, G1(§)d€ and w(t)(€) = E(t) — E*(¢). We
observe that Gy, like 3, is in L*(2) and L*(0,1).

For our semigroup formulation, we consider (3.2) in the state space Z =V x H x
W = HE(0,1) x L2(0,1) x L%, (—r,0, H) with states (¢,v,n) = (E(t), E(t), w(t)) =
(E(t), E(t), E(t) — E'(-)). To define an infinitesimal generator, we begin by defining

a fundamental set of component operators. Let A € L(V,V*) be defined by

Ap = ?¢" — (B+ Gri)o + ¢/ (0)do (3.3)
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where dy is the Dirac operator dyp = (0). Then we find

(= Ag, ¥)y.y = (P8 )y +((B+ G, )y (3.4)

so that it is readily seen that 61 : V X V +— C defined by

51(¢,9) = (— Ag, )y o, (3.5)

is symmetric, V' continuous and V' coercive (i.e., 51(d, @) > c1|d|3 — Xo|@|% for con-
stants \g and ¢; > 0).
We also define operators B € £(V,V*) and K € L(W, H) by

B¢ = —v¢ — c$(0)do (3.6)
so that
(= Bo, 0}y = (46, 6} + cs(0)(0) (3.7)
and, forn € W = L%, (—r,0; H),
- 0 z € 0,1\
(&) =1 (338)
JZ GEn(&)de z € Q.
Since G(&,z) = 0 for z € [0,1]\Q2, we abuse notation and write this as
. 0
Kn= [ Gemed
even though, strictly speaking, n(&, z) is only defined for z € Q.
With these definitions and notations, equation (3.2) can then be written as
(E,0)y.y + (= AE,¢)y.y + (= BE,¢)y. v
+ < o K(E - Et)a ¢>V*,V = <\—7a ¢>V*,V
or
E(t) = AE(t) + BE(t) + K(E(t) — EY) + J(t) in V" (3.9)

10



We rewrite equation (3.9) as a first order system in the state ((t) = (E(t), E(t), w(t))

where w(t) = E(t) — E*. To aid in this we introduce another operator
D:domDCW—W

defined on dom D = {n € H'(—r,0; H)|n(0) = 0} by

0

D(8) = 5n(

6).
We then observe that w(t) = E(t) — E* satisfies

w(t)(#) = E(t)— E(t+0) = FE(t) — DEY(#)
= E(t)+ D(E(t) — EY0)) = E(t) + Dw(t)(8).
Thus we may formally rewrite (3.9) as a first order system and adjoin to it the

equation

w(t) = Dw(t) + E(t). (3.10)
We then obtain the first order system for ((¢) given by

(1) = AC(t) + F(t) (3.11)
where A given by
0 I 0
A=| A B K (3.12)
0 I D
is defined on
dom A = {(¢,%,n) € Z|Yp € V,n € dom D, Ap + By € H}. (3.13)

That is, A® = (¢, Ap + By + Kn, 1) + Dn) for & = (¢,v,7n) in dom A. The forcing
function F in (3.11) is given by F = col(0, J,0). To argue that A is the infinitesimal

11



generator of a Cy-semigroup, we actually consider the system (3.11) on an equivlaent
space Z, = Vi3 X H x W where V] is the space V with equivalent inner product
(B1, P2)y. = G1(1, #2) where 7, is the sesquilinear form given in (3.5). Recall that
07 is symmetric, V' continuous and V' coercive so that it is topologically equivalent
to the V inner product.

We are now ready to prove the following generation theorem.

Theorem Suppose that v, 3 € L*°(0,1),« € L*((0,1) x (0,1)) with o, 3,7 vanishing
outside Q. We further assume that o can be written a(t,z) = oy(t)as(z) where
a; € HY0,T) with ay(t) > 0, ay(t) < 0, and 0 < ar, < as(z) < ay for positive
constants ar, ay. Then the operator A defined by (3.12), (3.18) is the infinitesimal

generator of a Cy-semigroup on Z, and hence on the equivalent space Z.

To prove this theorem, we use the Lumer-Phillips theorem ([Paz83, p.14]). Since
7, is a Hilbert space, it suffices to argue that for some Ay, A — Aol is dissipative in
Z1 and R(A — A) = Z; for some A > 0, where R(AI — A) is the range of A\ — A.
We first argue dissipativeness.

Let ® = (¢,¢,n) € dom A. Then

(A®,®), = (1, 0)y, + (Ad + By + Kn, )y + (¥ + Dn,m)y
= (0,0, + (Ad+ By, )y y + (K0, )y + (9 + D1y
= 51(,¢) = 61(6, %) + (B, )y + (K, ¥) y + (¥ + D,y
= —(y, ) = cl(0) + (Kn, )y + (¥ + D,y

Voo 9% + (K0, ) | + [ + D,y |- (3.14)

IN

We consider estimates for the last two terms in (3.14) separately. From (3.8) we
have
. 0
(Enwhal = | [ Gi(O)n(6), %) 0]

-
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IA

[ Gi0)n(6) kv a0

17 0 2 2
5 | GO m(O) + 1ol )ds
ki [y + kol 7.

IN

IN

Moreover,

Wl < [ GiO)w,n(6) glao

[ @ + meza

< kalvli + kalnliy.

IN

Finally, since G1(6) > 0, G: > 0, and n € dom D requires n(0) = 0, we may argue

(Dnmy = [ GuOD(O), 1(0)) a0
= [ GO 5@ a0
= [ LGOI~ [ (GO0
= GO0 ~ G (gl — 5 [ GO (o) s
< 0.

Combining these estimates with (3.14), we obtain for & € dom A

(AR, @), < Ylol¥ll + (kr + Ka) nliy + (k2 + ks)[9[5

S )\O|@|2Zl7

which yields the desired dissipativeness in Z;.
To establish the range statement, we must argue there exists some A > 0 such

that for any given ¥ = (u, v, &) in Z, there exists ® in dom A satisfying
(M —-A)D =1. (3.15)

13



In view of the definition of A, the equation (3.15) is equivalent to the system
AP —1p = p
—Ap+A\—Byp—Kn=v (3.16)
—Y+A=D)p=¢
for (¢,1,n) € dom A, (u,v,&) € Z =V x HxW. The first equation is the same as ¢ =
A¢— u while the third can be written as n = (A= D)™} (£+1¢) = (A=D) Y (E+Ad—p).
These two equations can be substituted in the second to obtain an equation for ¢. If

this equation can be solved for ¢ € V, then the first and third can then be solved for

1 and 7, respectively. The equation for ¢ that must be solved is given by
—Ap+(A=B)(Ap—p) = KA =D) M+ Ap—p) =v
or
(M =AB-A-KM\-D)"'"\¢=OA-Bu+v+KA-D)({—p). (3.17)
If we can invert (3.17) for ¢ € V, then ¢ = A\¢p—pisin V, n = (A= D)+ Xd — p]
is in dom D C W and
Ap+ By = Nop—-du—v—KWN—D)(E+ X —p)
= M —v—Kp
is in H so that (¢,,n) is in dom A and solves (3.16).
Thus the range statement reduces to solving (3.17) for ¢ € V. This in turn reduces
to invertability of the operator A2 — AB — A — K(A — D)™\,
We first observe that (A — D)~! = (1 — e*)/\ since (A — D)(1 — e*) = X while
n(h) = # € + A\¢ — p] satisfies n(0) = 0 and hence is in dom D.
Thus, for ¢ € H, K(XA — D)~'\ satisfies

(K(1=)9,0)y = [ GiO)1~*)(6,0)5a0

T

ks|o|%

IN

14



and

(X = AB)¢, Oyey = (A 4+ X7) b + Acg(0)do, D)y y
= (N + )8, 0)y + Acl6(0)]”

> ke|o|3 for A sufficiently large.
Hence for X sufficiently large we have
(W =AB = A~ K\ —D) ']\, 0)y.
= (V= AB)$,8)y- v +51(6 8) = (K(A = D) "X, 6)
> keldli + c1loly — NolglE — kslol

= aloly + (ks — Ao — ks)|o[%-
Thus if we define the sesquilinear form
oA(8,4) = (N = AB = A= K(A = D) "N, )y
we see that for \ sufficiently large, oy is V' coercive and hence, by the Lax-Milgram

lemma [W1087], it is invertible. It follows immediately that (3.17) is invertible for

¢ € V. This completes the arguments to prove the Theorem.

Let S(t) denote the semigroup generated by A so that solutions to (3.11) are given

by
()= 5o+ [ St~ 9)F(s)ds. (3.18)
Solutions are clearly continuously dependent on initial data {, and the nonhomoge-
neous perturbation F. The first component of ((t) is a generalized solution E(t)
of (3.1). One can now argue that the solution agrees with the unique weak so-
lution obtained in Chapter 3 of [BBLO00], by using the arguments in Chapter 4.4
of [BSW96]. Briefly, one argues equivalence for sufficiently regular initial data and
nonhomogeneous perturbation. Then density along with continuous dependence is

used to extend the equivalence to more general data (see [BSW96] for details).
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4 Concluding Remarks

In the previous section we presented a semigroup generation theorem under general
conditions on the coefficients «, 3,y of (2.15). The only possibly restrictive condition
involved a(t, z) = %g(t, z) = a;(t)as(z) where it is required that a4 (t) > 0,ad;(¢) < 0.
We consider more closely the condition for some common polarization laws.

For Debye polarization in a region €2, we have o, () = % gp(t) where g, is given in

(2.10). That is,

(68 - 6oo)e—t/r

9(t) = € -
so that
1. (€5 — €x0) _4
t) = —q,(t) = I >0
u(t) = —g(t) = ==l
and
() = G =)y g

Thus Debye polarization satisfies the conditions of the generation theorem and the
associated system generates a Cy semigroup.

For Lorentz polarization, we have (recall (2.11))

2
€ow, _
Pe t/2T

14

gp(t) = sin vyt

and hence

1. wyre 1 . 2
a(t) = ggp(t) = y—g [(2—7_2 — wg) sin vyt — — cos I/Ot].

We therefore see that it is not possible to conclude that a; (t) > 0 or &;(¢) < 0 so that

our generation theorem does not guarantee a semigroup representation for systems

with a Lorentz polarization law. In spite of this, we do believe that the Lorentz

16



law does yield a system with a semigroup representation. We conjecture that the
proof of the theorem we present can be modified to weaken the hypothesis on «a so
as to include Lorentz and other oscillatory (even order) polarization models. We are
currently pursuing these ideas.

In closing we point out that the general class of dielectric response functions
consisting of a linear combination of decreasing exponentials (essentially multiple
Debye mechanisms) suggested for glasseous materials by Hopkinson [Hop77] (see the

discussion in [Blo81, p.101-103]) are included under the theory presented in this note.
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